
Learning Control for Task Specific Industrial Robots

Chung-Yen Lin1, Wenjie Chen2, and Masayoshi Tomizuka1

Abstract— Iterative learning control (ILC) is a strategy that
allows a control system to improve its performance by making
use of the error signals collected from previous iterations. A
prerequisite of using ILC is that the output reference has to
be repetitive from trial to trial. A full run of ILC training
(taking non-negligible time) is needed when there exist small
changes in the reference signal. This paper introduces a new ap-
proach to extrapolate the converged ILC policies to previously
unseen tracking problems. A time-frequency domain mapping
is constructed to approximate the ILC policy for a group of
trajectories used in a particular task, say spot welding. We also
introduce the idea of feature-frequency space, where the ILC
policies from different trajectories can be encoded into a single
model. This model can generate a control policy that performs
comparably to the ILC policy while having the advantage of
not requiring a full training for a new trajectory. The proposed
method implemented on a FANUC R-2000iC robot achieved
31.6% of vibration reduction whereas the standard ILC (i.e.,
with a full training for each particular trajectory) achieved
34.6% of vibration reduction.

I. INTRODUCTION

Iterative learning control (ILC) [1]–[3] is a useful tracking
control method for robot systems that repeatedly execute the
same task. The idea is to incorporate the tracking errors
from previous iterations to generate a control update (usually
as a feedforward) to improve the system performance in
the next iteration. The success of the ILC relies on the
output reference being repetitive from trial to trial. This
condition limits the possible applications of learning control.
Namely, a full run of ILC training is needed when there exist
changes in the initial condition, the setpoints, and the total
traveling time of trajectory. A full training is not preferred
since it takes non-negligible engineering efforts to setup
the required sensors for learning and to do performance
validation. Therefore, it is desirable to develop a learning
control method that serves a group of motions with a single
learning action.

A possible solution to find a mapping between the refer-
ence signal and the ILC update for a group of trajectories
used in a particular task (for example, spot welding). A
related work called the setpoint variation learning control
was presented in [4]. It used a least-squares estimate of
finite impulse response (FIR) model to describe the nominal
behavior of the ILC. It was shown to be useful for linear
systems since most characteristics of the ILC law are simple
enough to be captured by a FIR model. In the case of

*This work was supported by FANUC Corporation, Japan.
1Chung-Yen Lin and Masayoshi Tomizuka are with Department of

Mechanical Engineering, University of California, Berkeley, CA 94720,
USA. Email: {chung yen, tomizuka} at berkeley.edu

2 Wenjie Chen is with FANUC Corporation, Oshino-mura, Yamanashi-
ken, Japan. Email: wjchen at berkeley.edu

highly nonlinear systems like robot manipulators, we may
need a nonlinear model to describe this mapping. In [5],
the authors proposed to use a neural network to construct a
nonlinear mapping between ILC commands and the system
states. However, as it is a static mapping, the method cannot
properly describe the dynamic properties in the ILC policy.

This paper presents a learning controller in the time-
frequency domain, where the control policy is considered
as a complex function that maps the reference signal to
the reference update. The idea of feature-frequency space
is introduced to encode the ILC policies from different
trajectories to a single non-parametric model. With this
model, we are able to use the previously learned ILC data to
generate a control policy for a previously unseen reference
signal. The controller then can be transformed into the time
domain to update the reference signal. The proposed method
is validated on a FANUC R-2000iC robot.

II. PRELIMINARIES

A. Baseline Controller

A standard control structure for industrial manipula-
tors [6, 7] is shown in Fig 1. It consists of a feedfor-
ward controller and a feedback controller. The feedforward
controller is used to generate required motor torques for
trajectory following, while the feedback controller is used
to compensate disturbances and model uncertainties. For
industrial robots with indirect drive mechanisms, the motor
side behavior may often deviate from the load side (i.e., end-
effector) behavior due to the robot joint dynamics. In this
case, the motor side sensors alone may not be sufficient for
achieving good control performance on the load side.

B. Iterative Learning Control

A state-of-the-art solution is to equip a inertial mea-
surement unit (IMU) to measure the end-effector motion
(in particular the vibration) and use this information to
control the robot [8, 9]. To be precise, an ILC is designed
to generate a reference update for achieving better output
tracking performance. The structure of the ILC used in this
paper is shown in Fig. 2. Here we assume that the load
side position information is accessible. It can be achieved
by estimating from the accelerometer readings. Details of
the ILC design can be found in [8, 9]. In the rest of this
paper, we will step by step design a learning controller that
is able to generate a reference update performing like the
one generated by the ILC.

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1837-6/16/$31.00 ©2016 IEEE 7202

Feedback
Controller

Reference
Update

Inverse Robot
Dynamics

Reference
Generator

Motor Side
FF Torque

Load Side
FF Torque

Load Side
Reference

Motor Side
Reference

Inverse Joint
Dynamics

Motor Side
FB Torque

Robot

Motor Side Joint Position

Load Side
Position

Baseline Controller

_
+

+

+

+

+

(Optional)

Fig. 1: Structure of the baseline controller

Learning
Filter

Reference
Update

(Next Iter.)

Load Side
Reference Robust

Filter

Load Side
Position

Iterative Learning Control

Memory
Reference Update

(Current Iter.)

Reference
Correction

_

+ +

+

Fig. 2: Structure of the iterative learning control

III. TIME-FREQUENCY ANALYSIS

A. LTV Systems in Time-frequency Domain

The idea to learn a control policy in the time-frequency
domain using the previously learned ILC data. To do this,
we first derive a multiplicative representation of linear time
varying (LTV) systems in the time-frequency domain. The
formulation is similar to the spectral modifications [10], but
we approach it from a control system viewpoint. This would
allow us to easily design and learn a controller in the time-
frequency domain.

Given a time domain signal y(k), we perform a time-
frequency analysis by swiping the signal with a window
function and running a discrete time Fourier transform
(DTFT) for each window. This operation is called the dis-
crete time short-time Fourier transform (DT-STFT) and it is
formulated as:

Y (n, f) =

∞∑
k=−∞

w(n− k)y(k)e−jfk (1)

where Y (n, f) is the time-frequency domain representation
of the timed signal y(k), n is the time index, f is the
frequency, and w is the window function with a window
length nw. The hop size (i.e., the number of time steps from
one window frame to the next) is assumed to be one in this
paper.

Assume that the signal y(k) is generated from a LTV
system with an impulse response h(k, τ) at time step k
and an input signal x(k), the input-output relation can be
described by [11]:

y(k) =

∞∑
r=−∞

h(k, k − r)x(r) (2)

Substituting (2) into (1) yields:

Y (n, f) =

∞∑
k=−∞

∞∑
r=−∞

w(n− k)h(k, k − r)x(r)e−jfk

Then by setting s = k − r, we have:

Y (n, f) =
∞∑

s=−∞

∞∑
r=−∞

w(n− s− r)h(s+ r, s)x(r)e−jf(s+r) (3)

By assuming that the window length is longer than the
impulse response, we have:

h(s+ r, s)w(n− s) ' h(s+ r, s)w(n)

This results in an approximate of Y (n, f):

Y (n, f) '
∞∑

s=−∞

∞∑
r=−∞

w(n− r)h(s+ r, s)x(r)e−jf(s+r)

It is worth pointing out that, for linear time invariant (LTI)
systems (i.e., h(s+ r, s) = h(s)), the above equation can be
simplified as a multiplicative relation of the transfer function
and the input signal [12], [13]:

Y (n, f) '
∞∑

r=−∞
w(n− r)x(r)e−jfr

∞∑
s=−∞

h(s)e−jfs

= X(n, f)H(f)

However, in the case of LTV systems, an additional assump-
tion needs to be made to get this multiplicative relation.
Namely, by assuming that the impulse response is invariant
within a window, we have:

h(s+ r, s)w(n− r) ' h(n, s)w(n− r) (4)

Substituting (4) into (3) yields:

Y (n, f) '
∞∑

s=−∞

∞∑
r=−∞

w(n− r)h(n, s)x(r)e−jf(s+r)

=

∞∑
r=−∞

w(n− r)x(r)e−jfr
∞∑

s=−∞
h(n, s)e−jfs

= X(n, f)H(n, f)

This multiplicative relation is simple enough for controller
design.

B. Implementation of STFT

In practice, the time-frequency analysis shown in (1) is not
realizable. Therefore, instead of running discrete time Fourier
transform in each window, we run discrete Fourier transform
(DFT). This gives us the discrete STFT as follows [10]:

Y (n, l) = e−jωln (DFT {SHIFT{y,−n} ◦ w})l (5)

7203

where y and w are respectively the vector representations
of the time domain signals y(k) and w(k), SHIFT is the
time shifting operator1, ◦ is the element-wise multiplication
operator, l is the index for the frequency bin, and ωl is the
l-th normalized frequency.

Similarly, to recover the time domain signal, we perform
inverse DFT on each spectrum and shift it back to where it
belongs. The algorithm is as follows:

y =
∑
n

SHIFT
{

DFT−1{Yn}, n
}

(6)

where Y is the matrix representation of the function Y (n, l),
while Yn is the n-th row of the matrix Y. Hereafter, the
transformations (5) and (6) will be denoted as Y = STFT {y}
and y = STFT−1 {Y}.

IV. CONTROLLER DESIGN

With the multiplicative relation in the time-frequency
domain, it is natural to think of an ILC policy as a complex
function that maps the reference signal to the reference
update in this space. Now the remaining problem becomes
how to generate a time-frequency domain controller that
behaves like an ILC for a given trajectory.

In order to encode the ILC policies from different trajec-
tories to a single model, we have to consider the ILC as
a linear parameter-varying (LPV) system [14] instead of a
LTV system at this point. Namely, the frequency response
is varying as a function of certain parameters, where the
parameters are assumed to be a function of high level features
of the motion. This allows us to transform the ILC policy
at each time step into the feature-frequency domain and to
perform a policy learning in this space. Once a feature-
frequency domain policy is obtained, it can be used to
generate a controller for a previously unseen reference (as
visualized in Fig. 3). Then the time-frequency domain policy
can be obtained directly by flatting and scaling this two-
dimensional manifold in the feature-frequency space. Details
can be found in the following sections.

A. Training Data Structure

The policy learning is performed in a joint-by-joint manner
(i.e., a decentralized policy learning). We collect the con-
verged ILC data from different trajectory tracking problems
and partition the data into nd sets. Each training data set
D(i) is a tuple with three elements (z(i), v(i), u(i)) where
z(i) ∈ Rnz is the feature vector, v(i) ∈ Rnf is the vector
representation of a sequence of velocity commands in the
configuration space, u(i) ∈ Rnf is the vector representation
of the ILC commands in the configuration space, and nf

is the data length. The feature vector can be as simple
as the robot kinematics (i.e., position and velocity). It can
also consist of high level features like robot inertia or the
magnitude of reference at certain frequency components.

1SHIFT{a, b} is an operator that delays the signal a by b steps.

Fig. 3: Search a time-frequency domain feedforward con-
troller in the feature-frequency domain (z1 and z2 are fea-
tures)

B. Policy Learning

The proposed method tries to learn a controller that
behaves like the ILC control law in the feature-frequency do-
main. The method proceeds as follows. First, for each dataset
D(i), we apply the DFT on v(i) and u(i), and divide the
output spectrum by the input spectrum to get the empirical
transfer function c(i) ∈ Cnf corresponding to the vector of
normalized frequency bins f = [0, 2π

nf
, 4π
nf

, . . . ,
2(nf−1)π

nf
]T ∈

Rnf . This empirical transfer function can be viewed as a
linear approximate of the ILC policy obtained at the feature
point z(i). Therefore, the policy learning problem becomes
to train a model such that, given an arbitrary feature point
and a frequency of interest, it returns the corresponding
control policy in terms of frequency domain magnitudes and
phases. The model used to approximate the policy is shown
as follows:

g ∼ GP(m(x; θ1), k(x, x
′; γ1)) (7)

h ∼ GP(m(x; θ2), k(x, x
′; γ2)) (8)

|c| ∼ N (g, σ2
1) (9)

∠c ∼ N (h, σ2
2) (10)

where GP is the Gaussian process regression (GPR)
model [15], x = [zT, f]T ∈ Rnz+1 is the input vector
consisting of a feature vector and a frequency bin, m(x)
and k(x, x′) are respectively the mean function and the
kernel function to be designed, while {θi, σi, γi} are hy-
perparameters that can be computed by maximizing the
marginal likelihood of the model with the training data. In
this paper, the mean function is set as the constant mean (i.e.,
m(x; θ) = θ)2 and the kernel function is set as the squared
exponential covariance function:

k(x, x′; γ) = exp
(
−γ(x− x′)T(x− x′)

)
We then construct the training data for the input channel

2An alternative choice of the mean function is a FIR model that
approximates the ILC policy.

7204

as:

x(i) =

[[
z(i) z(i) · · · z(i)

]
fT

]
∈ R(nz+1)×nf

Then stacking all data together yields the overall input/output
data matrices:

X =
[
x(1) x(2) · · · x(nd)

]
∈ R(nz+1)×ndnf

|C| =

 |c(1)|
...

|c(nd)|

 ∈ Rndnf ∠C =

 ∠c(1)
...

∠c(nd)

 ∈ Rndnf

By substituting the training data into the Gaussian pro-
cess models shown in (7)-(10), we have the joint dis-
tributions |C| ∼ N (M(X; θ1),K(X,X; γ1)) and ∠C ∼
N (M(X; θ2),K(X,X; γ2)) with:

M(X; θ) =

m(x1; θ)
...

m(xn; θ)


K(X,X; γ) =

k(x1, x1; γ) · · · k(x1, xn; γ)
...

. . .
...

k(xn, x1; γ) · · · k(xn, xn; γ)


where xi is the i-th row in the data matrix X, M(X; θ)
is the vector representation of the mean function m(x; θ)
with the i-th entry being m(xi; θ), and K(X,X′; γ) is the
matrix representation of the kernel function k(x, x′; γ) with
the (i, j)-th entry being k(xi, x

′
j ; γ). The mean functions

and the kernel functions will be pre-computed for later use
when generating a new control policy. A Bayesian network
representation of the proposed GPR model is shown in
Fig. 4a.

C. Generation of a Time-frequency Domain Controller

Given a previously unseen velocity reference v∗ ∈ Rnv ,
we first apply the STFT to obtained a spectrogram:

V∗ = STFT {v∗} ∈ Cnt×nf

where nf and nt are the sizes of this spectrogram. The
magnitude spectrogram and the phase spectrogram can then
be computed by:

V∗ = |V∗|ej∠V∗

Note that every entry of V∗ would correspond to a feature
point z∗ and a frequency component f∗. Now we consider the
control policy |c∗| and ∠c∗ corresponding to x∗ = [zT

∗ , f∗]
T

as random variables with the following joint distributions:[
|C|
|c∗|

]
∼ N

([
M(X)
m(x∗)

]
,

[
K(X,X) K(X, x∗)
K(x∗,X) k(x∗, x∗)

]
+Σ

)
(11)[

∠C
∠c∗

]
∼ N

([
M(X)
m(x∗)

]
,

[
K(X,X) K(X, x∗)
K(x∗,X) k(x∗, x∗)

]
+Σ

)
(12)

where Σ = σ2I .

|c(1)|

z(1)

…

…
g1,1 g1,2 g1,nf

Feature

vector

f

Normalized frequency

Empirical transfer function

Dataset #1

… |c(nd)|

z(nd)

…

…
gnd,1 gnd,nf

f

Dataset #nd

…

D
a

ta
se

t
#

2

…

D
a

ta
se

t
#
3

(a) GPR model for the ILC policy

|c*|

z*

…

…
g*1 g*2 g*nf

Feature

vector

f

Frequency of interest

Unknown transfer function

Prediction Model

…

D
a

ta
se

t
#

1

…

D
a

ta
se

t
#

2

D
a

ta
se

t
#
n
d

(b) Prediction model

Fig. 4: The proposed GPR model in a Bayesian network
representation. The controller magnitude |c| is used as an
example.

A graphical representation of this prediction model is
shown in Fig. 4b.

Since (11)-(12) are multivariate Gaussian distributions, we
can compute the conditional means of |c∗| and ∠c∗ given
x∗ = [zT

∗ , f∗]
T, X, and C:

|c∗| = m(x∗) +K(x∗,X)(K(X,X′) + Σ)−1(|C| −M(X))

∠c∗ = m(x∗) +K(x∗,X)(K(X,X′) + Σ)−1(∠C −M(X))

This gives an estimate of c∗ corresponding to every entry of
V∗ and therefore can construct a complex control policy C∗.

Now the magnitude spectrogram of feedforward signal can
be generated using the multiplicative relation in the time-
frequency domain:

|U∗| = |C∗| ◦ |V∗|

where U∗ ∈ Cnt×nf is the time-frequency space feedfor-
ward signal. Similarly, the phase spectrogram ∠U∗ can be
computed by:

∠U∗ = ∠C∗ + ∠V∗

The time domain control input can be recovered by perform-
ing the inverse STFT on U∗:

u∗ = STFT−1 {U∗}

7205

V. FILTER DESIGN

Ideally, passing the reference spectrogram through the pol-
icy will results in the approximate ILC commands. However,
as the training data only explore the state space is a specific
way, it is risky to use an estimated control policy to control
the system. The control inputs will need to pass though
a coherence filter and a lowpass filter for enhancing the
robustness of the algorithm. The modified control law (for
the magnitude part) is as follows:

|U∗| = Q ◦ S ◦ |C∗| ◦ |V∗|

where Q and S are respectively the lowpass filter and the
coherence filter, which will be introduced in the following
sections.

A. Coherence Filter

Note that at each time index n on the spectrogram, the
DFT is computed by a sequence of velocity commends
v∗(n) ∈ Rnf corresponding to a feature point z(n) ∈ Rnz . It
is of interest to find a training data set which has the feature
point closest to the current feature z(n):

i∗(n) = argmin
i

‖z(n)− z(i)‖2

The idea of coherence filter is to compare the pattern of the
testing data v∗(n) to that of the training data v(i

∗(n)). To be
precise, the magnitude of the coherence filter at time step n
and frequency bin l can be computed as follows:

S(n, l) =
√

Coh{v∗(n), v(i∗(n))}(l) (13)

where Coh is the coherence function [16]:

Coh{y, z}(l) = |Ψyz(l)|2

Ψyy(l)Ψzz(l)

while Ψ is the spectral density function [17]. This filter
returns one when the testing data v∗(n) and the training
data v(i

∗(n)) are identical. It returns zero when two signals
are completely unrelated. A matrix representation of the
coherence filter is defined as S ∈ Rnt×nf , where the (n, l)-
entry of the matrix S is equal to S(n, l).

B. Zero-phase Filter

Note that there exist uncertainties when computing em-
pirical transfer function with the training data. Therefore, a
zero-phase filter is applied in the time-frequency domain to
suppress high frequency control actions. It can be achieve
by defining a filter matrix Q ∈ Rnt×nf to have the (n, l)-th
entry equals to:

Q(n, l) =

{
1 if f(l) ≤ ωc

ε if f(l) > ωc

where ε is chosen as 10−6 in this paper.

(a) (b)

Accelerometer Reflector

(c)

Fig. 5: FANUC R-2000iC/210F robot setup

AB

C

G
H

F

D

E

I

J

Fig. 6: Box motion with application to spot welding

VI. CASE STUDY

A. System Setup

All the experiments in this paper are performed on the
FANUC R-2000iC/210F robot setup shown in Fig. 5. The
FANUC R-2000iC is a large size robot designed for heavy
duty applications such as material handling and spot weld-
ing. It has six joints driven by indirect drive mechanisms.
Each joint is equipped with a built-in motor encoder. An
accelerometer is equipped to measure the load side accel-
eration information. In this paper, we assume access to the
accelerometer for the ILC, but not for the proposed algo-
rithm. In addition, a three-dimensional position measurement
system, the Leica Absolute Tracker AT901B, is utilized to
measure the end-effector tool center point (TCP) position
in Cartesian space. The Leica AT901B is only used for
performance validation. The motor encoders and the robot
controller ran at 1kHz. The accelerometer and the Leica
AT901B ran at 1kHz. A 210kg payload is mounted on the
last joint to mimic the real-world working conditions. A
reflector for the Leica AT901B is magnetically mounted
to the payload. Detailed specification of the FANUC R-
2000iC/210F robot can be found in [18].

B. Experimental Results

This paper considers spot welding as a case study of
the proposed time-frequency domain feedforward learning
(TFFL) method. The training data is collected from a box-
motion as shown in Fig. 6. It consists of eight to ten spot
welding points on each edge, and the robot motion between
each pair of points is designed as a third order smooth time-
optimal trajectory. The testing trajectory consists of eight

7206

Time (sec)

0 2 4 6 8 10 12

F
re

q
u
e
n
c
y
 (

H
z
)

0

2

4

6

8

10

12

14

M
a
g
n
it
u
d
e
 (

d
B
)

-160

-140

-120

-100

-80

-60

-40

(a) Magnitude spectrogram

Time (sec)

0 2 4 6 8 10 12

F
re

q
u
e
n
c
y
 (

H
z
)

0

2

4

6

8

10

12

14

P
h
a
se

 (
d
e
g
re

e
)

-150

-100

-50

0

50

100

150

(b) Phase spectrogram

Fig. 7: Velocity commands in the time-frequency domain

spot welding points on the IJ edge, which are not included
in the training dataset.

The time-frequency domain reference signal of the testing
trajectory is shown in Fig. 7. The window length is set as
nw = 256 (i.e., 0.256 sec). These spectrograms are used as
inputs of the Gaussian process regression model to generate
the control policy as shown in Fig. 8. The corresponding
coherence filter can also be obtained by running (13). The
resulting filter spectrograms are shown in Fig. 9. It is seen
that the filter would deactivate the reference update when the
similarity between the testing data and the training data is
minor. Therefore, it is expected that when the testing data is
totally isolated from the training data, the coherence filter
may have small values over the entire spectrogram. The
learning controller will not generate any reference update
in such case because it is not confident to do so. This
provides us a certain level of stability since the controller
will degenerate to the baseline controller when the testing
data is uncorrelated to the training data.

After passing the reference signal though the controller
and the filter, a time domain reference update can be
generated. This new feedforward control law was then im-
plemented on the FANUC robot. The experimental results
are shown in Fig. 10. As expected, the system with the
baseline controller (gray dash-dot) has large tracking errors
whenever the acceleration reference has large magnitude.
Often times, these errors cannot be properly compensated
without load side sensors. However, the TFFL (blue solid)
can effectively suppress the errors since the control policy is
generated based on the ILC policy over similar trajectories.
To further evaluate the proposed method, we perform the

Time (sec)

0 2 4 6 8 10 12

F
re

q
u
e
n
c
y
 (

H
z
)

0

2

4

6

8

10

12

14

M
a
g
n
it
u
d
e
 (

d
B
)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

(a) Magnitude spectrogram

Time (sec)

0 2 4 6 8 10 12

F
re

q
u
e
n
c
y
 (

H
z
)

0

2

4

6

8

10

12

14

P
h
a
se

 (
d
e
g
re

e
)

-40

-20

0

20

40

60

80

100

120

140

160

180

(b) Phase spectrogram

Fig. 8: Control policy in the time-frequency domain

Time (sec)

0 2 4 6 8 10 12

F
re

q
u
e
n
c
y
 (

H
z
)

0

2

4

6

8

10

12

14

C
o
h
e
re
n
c
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9: Coherence filter

1 2 3 4 5 6

Time (sec)

-0.3

-0.2

-0.1

0

E
n

d
-e

ff
e

c
to

r
P

o
s
it
io

n
 (

m
)

Reference

Baseline

TFFL

ILC

1.6 1.8 2 2.2 2.4 2.6

Time (sec)

-0.105

-0.1

-0.095

-0.09

-0.085

E
n

d
-e

ff
e

c
to

r
P

o
s
it
io

n
 (

m
)

Reference

Baseline

TFFL

ILC

Fig. 10: Position tracking results

7207

standard ILC (red dash) on this testing trajectory. Note that
this ILC information is only used for validation, the TFFL
does not have access to it in the training phase. It is seen
that the behavior of the TFFL is similar to the one of the
ILC, while the advantage is that the TFFL does not require
an additional learning action every time when the trajectory
is changed.

To further analyze the proposed method, Fig. 11 shows all
the position errors, the velocity errors, and the acceleration
errors along the moving direction. Among them the acceler-
ation profile is of particular interest since it is a measure of
vibration. Again, it is seen that both the ILC and the TFFL
provide significant improvement in the tracking performance,
while the ILC slightly outperforms the TFFL. This follows
the intuition that the TFFL is an approximate of the ILC and
therefore cannot perform better than the ILC.

A quantitative comparison can be found in Table I. It is
shown that the standard ILC achieved 34.6% of vibration
reduction (i.e., acceleration error reduction), whereas the
TFFL can achieve 31.6% of vibration reduction. This again
demonstrates that the proposed method is able to generate a
control policy that performs comparably to the ILC.

VII. DISCUSSION & CONCLUSIONS

This paper proposed a time-frequency domain feedforward
learning method for robot motion control. The idea is to
use the previously learned ILC policy to find a feature-
frequency domain mapping between the reference signal and
the control actions. This mapping is then used to generate
a time-frequency domain controller that behaves like an
ILC for a new trajectory. In comparison to the standard
ILC, the proposed method has the advantage that it is not
trajectory specific and it serves a group of trajectories with a
single learning action. This feature allows learning controls
to be utilized in broader applications. However, further
investigation is needed on the robustness of the proposed
method. Experimental results show that the proposed method
provides significant improvement comparing to the baseline
controller. It performs comparably to the ILC while having
the advantage of not requiring an additional learning action
for a previously unseen trajectory.

REFERENCES

[1] C.-Y. Lin, L. Sun, and M. Tomizuka, “Matrix factorization for design
of Q-filter in iterative learning control,” in 2015 IEEE 54th Annual
Conference on Decision and Control (CDC). IEEE, 2015, pp. 6076–
6082.

[2] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” Control Systems, IEEE, vol. 26, no. 3, pp. 96–114,
2006.

[3] C.-Y. Lin, L. Sun, and M. Tomizuka, “Robust principal component
analysis for iterative learning control of precision motion systems with
non-repetitive disturbances,” in 2015 American Control Conference
(ACC). IEEE, 2015, pp. 2819–2824.

[4] M. F. Heertjes and R. M. van de Molengraft, “Set-point variation
in learning schemes with applications to wafer scanners,” Control
Engineering Practice, vol. 17, no. 3, pp. 345 – 356, 2009.

[5] J. Asensio, W. Chen, and M. Tomizuka, “Feedforward input generation
based on neural network prediction in multi-joint robots,” Journal
of Dynamic Systems, Measurement, and Control, vol. 136, no. 3, p.
031002, 2014.

1 2 3 4 5 6

Time (sec)

-4

-2

0

2

4

6

P
o

s
it
io

n
 E

rr
o

r
(m

)

×10-3

Baseline

TFFL

ILC

(a) Position tracking errors

1 2 3 4 5 6

Time (sec)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
e

lo
c
it
y
 E

rr
o

r
(m

/s
e

c
)

Baseline

TFFL

ILC

(b) Velocity tracking errors

1 2 3 4 5 6

Time (sec)

-4

-3

-2

-1

0

1

2

3

4

A
c
c
e

le
ra

ti
o

n
 E

rr
o

r
(m

/s
e

c
2
)

Baseline

TFFL

ILC

(c) Acceleration tracking errors

Fig. 11: Comparisons of the tracking errors

[6] J. J. Craig, Introduction to robotics: mechanics and control. Pearson
Prentice Hall Upper Saddle River, 2005, vol. 3.

[7] S. B. Niku, Introduction to Robotics: Analysis, Control, Applications,
2nd ed. New Delhi: Wiley, 2012.

[8] K. Inaba, C.-C. Wang, M. Tomizuka, and A. Packard, “Design of
iterative learning controller based on frequency domain linear matrix
inequality,” in American Control Conference, 2009. ACC ’09., June
2009, pp. 246–251.

[9] W. Chen and M. Tomizuka, “Dual-stage iterative learning control
for mimo mismatched system with application to robots with joint
elasticity,” Control Systems Technology, IEEE Transactions on, vol. 22,
no. 4, pp. 1350–1361, 2014.

[10] J. O. Smith, Spectral audio signal processing. W3K, 2011.
[11] G. Gu, Discrete-Time Linear Systems: Theory and Design with Appli-

cations. Boston: Springer, 2012.
[12] Y. Avargel and I. Cohen, “On multiplicative transfer function approxi-

mation in the short-time fourier transform domain,” Signal Processing
Letters, IEEE, vol. 14, no. 5, pp. 337–340, May 2007.

[13] C. Avendano, “Temporal processing of speech in a time-feature

7208

TABLE I: A Quantitative Comparison

Baseline ILC TFFL

Position (m)
RMS Error 1.74× 10�3 6.57× 10�4 8.14× 10�4

Standard Deviation 1.73× 10�3 6.54× 10�4 8.08× 10�4

Peak Error 5.88× 10�3 3.09× 10�3 3.30× 10�3

Velocity (m/sec)
RMS Error 0.0387 0.0182 0.0210

Standard Deviation 0.0387 0.0182 0.0210
Peak Error 0.1851 0.0973 0.1146

Acceleration (m/sec2)
RMS Error 1.0718 0.6864 0.7472

Standard Deviation 1.0718 0.6864 0.7472
Peak Error 4.7108 4.1577 4.0616

space,” Ph.D. dissertation, Oregon Graduate Institude of Science and
Technology, 1997.

[14] C. Hoffmann and H. Werner, “A survey of linear parameter-varying
control applications validated by experiments or high-fidelity simula-
tions,” Control Systems Technology, IEEE Transactions on, vol. 23,
no. 2, pp. 416–433, 2015.

[15] C. E. Rasmussen, “Gaussian processes for machine learning.” MIT
Press, 2006.

[16] J. S. Bendat and A. G. Piersol, “Random data analysis and mea-
surement procedures,” Measurement Science and Technology, vol. 11,
no. 12, p. 1825, 2000.

[17] P. Stoica and R. L. Moses, Spectral analysis of signals. Pear-
son/Prentice Hall Upper Saddle River, NJ, 2005.

[18] (Sept. 2015) FANUC R-2000iC. [Online]. Available:
http://www.fanuc.eu/be/en/robots/robot-filter-page/r-2000-series/r-
2000ic-210f

7209

